Scalarization functions¶
Scalarization functions relying on numpy.
- morl_baselines.common.scalarization.tchebicheff(tau: float, reward_dim: int)¶
Tchebicheff scalarization function.
This function requires a reference point. It is automatically adapted to the best value seen so far for each component of the reward.
- Parameters:
tau – Parameter to be sure the reference point is always dominating (automatically adapted).
reward_dim – Dimension of the reward vector
- Returns:
Callable – Tchebicheff scalarization function
- morl_baselines.common.scalarization.weighted_sum(reward: ndarray, weights: ndarray) float ¶
Weighted sum scalarization (numpy dot product).
- Parameters:
reward – Reward vector
weights – Weight vector
- Returns:
float – Weighted sum