

Optimistic Linear Support and Successor Features as a Basis for Optimal Policy Transfer

Lucas N. Alegre¹

¹Institute of Informatics, UFRGS, Brazil

Contributions

We solve an open problem in transfer learning:

Optimal Policy Transfer How to construct a set of policies, such that combining them directly leads to the optimal policy for any novel tasks?

> Successor Features Optimistic Linear Support (SFOLS)

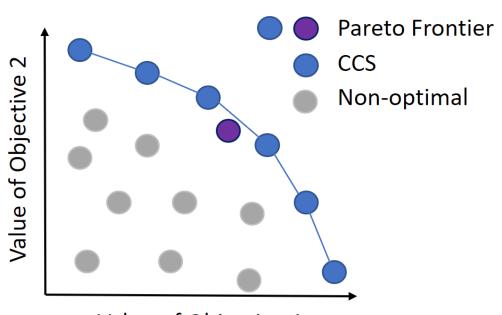
- extends theoretical guarantees from Transfer Learning and Multi-Objective RL (MORL)
- solves the Optimal Policy Transfer problem
- identifies optimal policies for any new tasks

MORL

Multi-objective reward:

 $\mathbf{r}:\mathcal{S} imes\mathcal{A} imes\mathcal{S}\mapsto\mathbb{R}^m$

Goal: find optimal policies for all convex combinations of the rewards/objectives



Value of Objective 1

The optimal policy w.r.t. any convex combination of the rewards is in the <u>CCS</u>!

Policy Transfer

Reward linear in $\phi \in \mathbb{R}^d$: $r_{\mathbf{w}}(s, a, s') = \boldsymbol{\phi}(s, a, s') \cdot \mathbf{w}$

Successor Features (SFs)

$$\boldsymbol{\psi}^{\pi}(s,a) \equiv \mathbb{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{i} \boldsymbol{\phi}_{t+i} | S_{t} = s, A_{t} = a\right]$$

$$q_{\mathbf{w}}^{\pi_i}(s,a) = \boldsymbol{\psi}^{\pi_i}(s,a) \cdot \mathbf{w}$$

Generalized Policy Improvement (GPI)

 $\pi^{\text{GPI}}(s; \mathbf{w}) \in \underset{a \in \mathcal{A}}{\operatorname{arg max}} \max_{\pi \in \Pi} q_{\mathbf{w}}^{\pi}(s, a)$

No guarantees that π^{GPI} will be optimal for the new task!

Intuitively: If we learn a set of policies whose SFs form a CCS, we can directly identify optimal policies for any new tasks!

Ana L. C. Bazzan¹

Bruno C. da Silva²

²CICS, University of Massachusetts, MA

Theoretical Results

Given an MDP, we define a MOMDP where each i-th objective/reward function is equal to the i-th reward feature:

 $R_i(s, a, s') \equiv \phi_i(s, a, s') \quad \blacksquare \quad \mathbf{q}^{\pi}(s, a) \equiv \boldsymbol{\psi}^{\pi}(s, a)$

We can then define a CCS over SFs!

 $\mathbf{CCS} = \{ \boldsymbol{\psi}^{\pi} \mid \exists \mathbf{w} \text{ s.t. } \forall \boldsymbol{\psi}^{\pi'}, \boldsymbol{\psi}^{\pi} \cdot \mathbf{w} \geq \boldsymbol{\psi}^{\pi'} \cdot \mathbf{w} \}$

Theorem 3.2

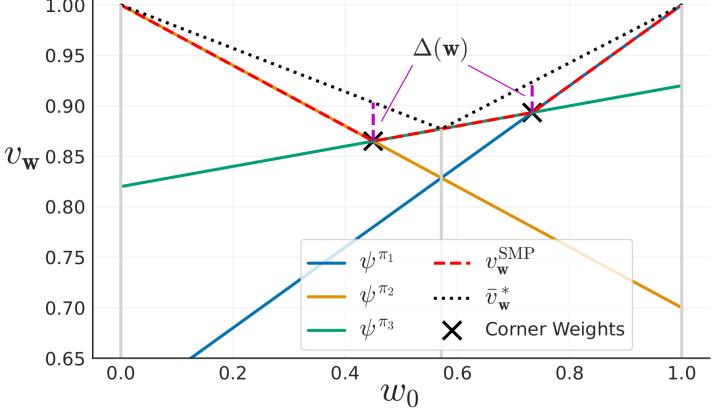
If the SF set $\Psi = \{\psi^{\pi_i}\}_{i=1}^n$ of a policy set $\Pi \equiv \{\pi_i\}_{i=1}^n$ is a CCS, then, given any task $\mathbf{w} \in \mathcal{W}$, the GPI policy $\pi^{GPI}(s; \mathbf{w})$ is optimal with respect to $r_{\mathbf{w}}$.

SFOLS: SFs Optimistic Linear Support

Extension of the OLS algorithm (Roijers, 2016) Guaranteed to identify a CCS over SFs (key for solving the Optimal Policy Transfer problem)

• Iteratively learns policies for tasks defined by corner weights

 Corner weights: tasks with optimistic maximal improvement

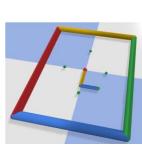


Experiments & Results

. 1.25

Four Room

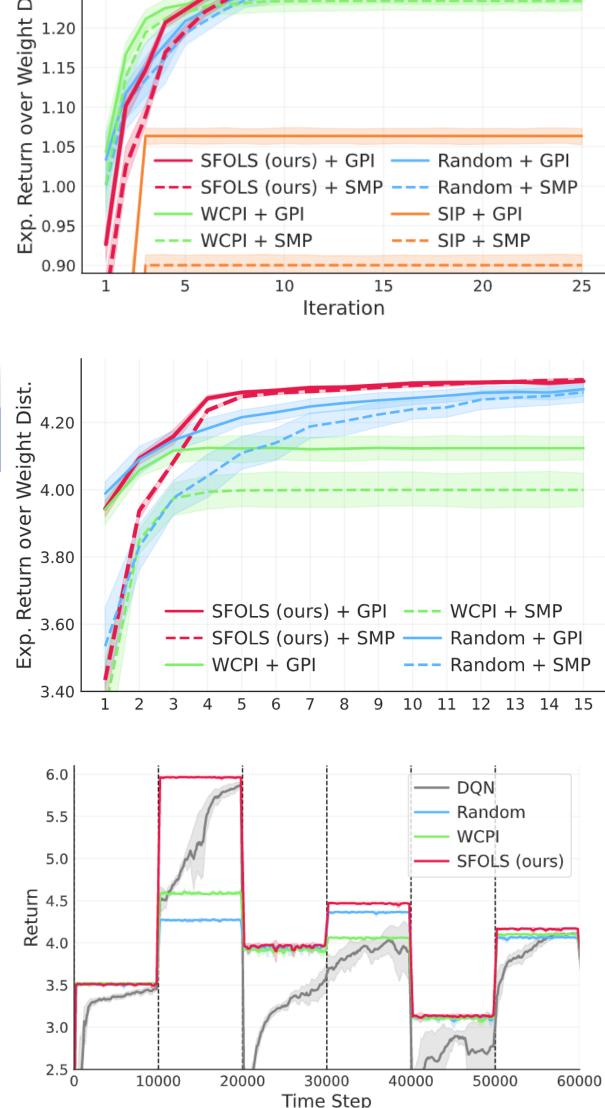
- SFOLS rapidly learns base policies that perform well over all tasks
- Reacher Task



• Outperforms stateof-the-art competing algorithms and baselines

Lifelong RL

- Zero-shot policy transfer setting
- SFOLS immediately adapts to novel tasks



Discussion & Conclusions

- We formally characterize the connection between transfer learning and MORL
- SFOLS solves the Optimal Policy Transfer problem • identifies optimal policies for any new tasks
- Theoretical/empirical findings relevant to the MORL and transfer learning communities