Multi-Step Generalized Policy Improvement by Leveraging Approximate Models

Lucas N. Alegre Ana L. C. Bazzan Ann Nowé Bruno C. da Silva

h-GPI: Multi-Step Generalized Policy Improvement Experiments & Results

• The **h-GPI** policy with planning horizon h
\n
$$
\pi^{h-GPI}(s) \in \arg \max_{a \in \mathcal{A}} (\mathcal{T}_m^*)^h
$$
\n
$$
=
$$
\n
$$
\arg \max_{a \in \mathcal{A}} \max_{\mu_1 \dots \mu_{h-1}} \mathbb{E}_m \left[\sum_{k=0}^{h-1} \gamma^k r(S_{t+k}, \mu_k(S_{t+k})) + \gamma \right]
$$
\n
$$
=
$$

where μ_k is any policy the agent could choose to deploy at time k.

$$
+ \gamma^h \max_{a' \in \mathcal{A}} \max_{\pi \in \Pi} q^{\pi}(S_{t+h}, a') \mid \mu_0(S_t) = a
$$

- Interpolates between model-free GPI and fully modelbased planning as a function of the planning horizon h
- Zero-shot policy transfer with performance guarantees by exploiting approximate, imperfect models

 $(\phi_{max} \min ||w - w_i|| + \gamma^h \epsilon + c(\epsilon_p, \epsilon_r, h))$

$$
{x}))\cdot \mathbf{w}+\gamma ^{h}\max{a^{\prime }\in \mathcal{A}}\max_{\pi \in \Pi }\hat{\boldsymbol{\psi}}^{\pi }(\hat{S}_{t+h},a^{\prime })\cdot \mathbf{w}\bigg|_{\pi _{i}\in \Pi }\hat{q}_{\mathbf{w}}^{\pi _{i}}(s,a)
$$

Contribution

h-GPI: Multi-Step Generalized Policy Improvement

Linear reward: SFs: $r_{\mathbf{w}}(s, a, s') = \phi(s, a, s') \cdot \mathbf{w}$ $\psi^{\pi}(s, a) \triangleq \mathbb{E}_{\pi} \Big| \sum_{\alpha}$ $i=0$ ∞ $\gamma^{i} \phi_{t+i} \mid S_t = s, A_t = a$

Generalized Policy Evaluation (GPE): $q_w^{\pi}(s, a) = \psi^{\pi}(s, a) \cdot w$

where
$$
c(\epsilon_p, \epsilon_r, h)
$$
 = $\frac{1-\gamma^h}{1-\gamma}$ ($\epsilon_r + \gamma \epsilon_p v_{max}$)

Zero-Shot Transfer with h-GPI and SFs

Goal: Solve any task in $\mathcal{M}^{\phi} \triangleq \{ M = (S, A, p, r_w, \gamma) \mid r_w = \phi(s, a, s') \cdot w \}$

Algorithm 1: h -GPI with Successor Features **Input**: Model $\hat{m} = (\hat{p}, \hat{\phi})$, SFs $\{\hat{\psi}^{\pi_i}\}_{i=1}^n$, planning horizon $h \ge 0$, state s, reward weights w 1 for action $a \in A$ do Let $S_t = s, \mu_0(s) = a$ Compute $(\mathcal{T}_{\hat{m}}^*)^h \max_{\pi \in \Pi} \hat{q}_{\mathbf{w}}^{\pi}(s, a) \leftarrow$ $\max_{\mu_1...\mu_{h-1}}\mathbb{E}_{\hat{m}}\left[\sum_{k=0}^{h-1}\gamma^k\hat{\phi}_{t+k}(\hat{S}_{t+k},\mu_k(\hat{S}_{t+k}))\right]$ Return: $\pi^{h\text{-}GPI}(s; \textbf{w}) \in \argmax_{a \in \mathcal{A}} (\mathcal{T}_{\hat{m}}^*)^h \max_{\pi}$

 $\text{con } h \geq 0$ is defined as: $(\mathcal{T}_m^*)^h$ max ∈Π $q^{\pi}(s,a)$

GPI Theorem

 $q_w^{GPI}(s, a) \geq \max_{\pi \in \Pi}$ ∈Π $q_W^{\pi}(s, a)$ for any $w \in W$

Generalized Policy Improvement (GPI)

Computation of a policy π' that improves over a set of policies $\Pi = {\pi_i}_{i=1}^n$ ℎ-GPI outperforms competitors under all values of h using a learned model

$$
\pi^{GPI}(s; w) = \arg\max_{a \in \mathcal{A}} \max_{\pi \in \Pi} q_w^{\pi}(s, a)
$$

ℎ-GPI is less susceptible to value function approximation errors as h increases

Theorem 1 (lower bound):
\n
$$
q^{h-GPI}(s, a) \geq \max_{\pi \in \Pi} q^{\pi}(s, a) - \frac{2}{1 - \gamma} (\gamma^{h} \epsilon + c(\epsilon_{p}, \epsilon_{r}, h))
$$

 $\cdot h$ -GPI: multi-step extension of GPI • Interpolates between model-free GPI $(h = 0)$ and fully model-based planning $(h \rightarrow \infty)$ • Exploits approximate models • Solves tasks in a zero-shot manner

h *trades-off* approximation errors in the agent's: • Action-value functions

Discussion & Conclusion

Successor Features (SFs)

Theorem 2 (optimality gap):

$$
q_w^* - q_w^{h-GPI}(s, a) \ge \frac{2}{1 - \gamma} \left(\phi_{max} \min_i\right)
$$

ℎ-GPI outperforms SF-MPC baseline using *ten times* fewer planning steps

-
-
-
-
-
- Learned model
-

M Inalegre@inf.ufrgs.br **@**lnalegre C github.com/LucasAlegre

h planning steps with
$$
\Pi = {\pi_i}_{i=1}^n
$$
: set of policies $m = (p, r)$: model

We characterize h-GPI's performance lower bound and optimality gap as a function of:

- h (planning horizon) • ${w_i}_{i=1}^n$ (reward weights for which policies in Π are optimal)
- ϵ (action-value function error)
- ϵ_p, ϵ_r , (model errors w.r.t. transition function p and reward r) Fetch Push

