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Multi-Objective Reinforcement Learning GPI Prioritized Dyna (GPI-PD)

Convex Coverage Set (CCS)

Multi-objective reward Policies learned via a Dyna-style approach using a learned dynamics model
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Prioritizes experiences for which GPI results in
larger performance improvements

Generalized Policy Improvement (GPI)

GPl is the computation of a policy 7’ that improves

over a set of policies T € 11 Expe riments

GP| Theorem
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n"!(s; w) = argmax max q/; (s, a) and MO-Hopper
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discrete and continuous state
and action spaces

Main Contributions

Evaluation metric: Expected Utility (EU) EU(IT) = By | max e 03y |

We introduce two Generalized Policy Improvement (GPI)-based

prioritization schemes that improve sample-efficiency in MORL: - I —— Minecart
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Expected Return of Velocity Objective
1.00 N * Maximum improvement is
0.95 e guaranteed to be in one of the
0.90 . corner weights (Thm. 3.2) . . .
Uwoss < Discussion & Conclusion
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T » Learns an improved policy for * Monotonically improve the quality of the set of policies
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, * GPI-PD is the first model-based MORL algorithm for continuous states
GPI-LS is guaranteed to:

* Identify a CCS in a finite number of iterations »  Outperforms state-of-the-art MORL algorithms in challenging tasks

* |dentify an €-CCS in case the learning algorithm is e-optimal * Significantly improves sample-efficiency
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