

Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization

¹Universidade Federal do Rio Grande do Sul ² Al-Lab - Vrije Universiteit Brussel ³ University of Massachusetts M Inalegre@inf.ufrgs.br and @Inalegre github.com/LucasAlegre/morl-baselines Lucas N. Alegre^{1,2} Ana L. C. Bazzan¹ Diederik M. Roijers² Ann Nowé² ² Bruno C. da Silva³

GPI Prioritized Dyna (GPI-PD)

Policies learned via a Dyna-style approach using a learned dynamics model

for H Dyna steps do ► GPI-Prioritized Dyna Sample $S \sim B$ according to $P_{\mathbf{w}_t}$ (Eq. (10)) $A \leftarrow \pi^{\text{GPI}}(S; \mathbf{w}_t); (\hat{S}', \hat{\mathbf{R}}) \sim p_{\varphi}(\cdot | S, A)$ Add $(S, A, \hat{\mathbf{R}}, \hat{S}')$ to $\mathcal{B}_{\text{model}}$

Prioritizes experiences for which GPI results in larger performance improvements

Experiments

Evaluation metric: *Expected Utility* (EU)

We introduce two Generalized Policy Improvement (GPI)-based prioritization schemes that improve sample-efficiency in MORL:

GPI Linear Support (GPI-LS)

- Identify the most promising preferences/objectives to train on
- Guaranteed convergence to optimal (or ϵ -optimal) solutions

 $P_{\mathbf{W}}(s, a) \propto q_{\mathbf{W}}^{\text{GPI}}(s, a) - q_{\mathbf{W}}^{\pi}(s, a)$

• Expected utility strictly dominates that of competitors

GPI-Prioritized Dyna (GPI-PD)

Identify relevant previous experiences when learning a new policy First model-based MORL method for continuous states/actions

- Our methods achieved higher expected utility and converged to better solutions
- Require *ten times less* environment interactions compared to SOTA method
- The Pareto Front identified by our methods cover better the space of possible trade-offs between objectives

Main Contributions

Discussion & Conclusion

Multi-Objective Reinforcement Learning

GPI Theorem $q_w^{GPI}(s, a) \geq \max_{\pi \in \Pi}$ $π$ ∈ Π $q_W^{\pi}(s,a)$ *for any* $w \in W$

• **Key idea:**

Consider only **corner weights,** and prioritize them based on the **performance improvement given by GPI:**

Deep Sea Treasure, Minecart, and MO-Hopper

discrete and continuous state and action spaces

• GPI-LS and GPI-LS+GPI-PD consistently identify (near) optimal solutions

- Maximum improvement is guaranteed to be in one of the corner weights (Thm. 3.2)
- Selects the corner weight with higher GPI priority
- Learns an improved policy for the selected reward weights
- We introduced two principled prioritization methods
	- Monotonically improve the quality of the set of policies
	- Convergence guarantees to (near) optimal solutions
- GPI-PD is the first model-based MORL algorithm for continuous states
- Outperforms state-of-the-art MORL algorithms in challenging tasks • Significantly improves sample-efficiency

GPI Linear Support (GPI-LS)

• Iteratively learns a policy set Π whose value vectors $\mathcal V$ approx. the CCS

Generalized Policy Improvement (GPI)

GPI is the computation of a policy π' that improves over a set of policies $\pi \in \Pi$

Minecart

MO-Hopper

Multi-objective reward

 $\mathbf{r}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto \mathbb{R}^m$

Goal: find optimal policies for all convex combinations of the rewards/objectives

$$
\pi^{GPI}(s; w) = \arg\max_{a \in \mathcal{A}} \max_{\pi \in \Pi} q_w^{\pi}(s, a)
$$

GPI-LS is guaranteed to:

- Identify a CCS in a finite number of iterations
- Identify an ϵ -CCS in case the learning algorithm is ϵ -optimal

Expected Return of Velocity Objective